
How to make your code
Python 2/3 compatible

Dr. Brett Cannon
brett@python.org

2015-04-10 @ PyCon

This talk is NOT
about convincing you to

use Python 3
See my PyCon 2013 talk if you need convincing

You can start TODAY!!!
If you only get one thing out of this talk, let it be this

References

● http://python3porting.com
● "What's New" documents for each Python

release
● Porting HOWTO: docs.python.

org/3/howto/pyporting.html

http://python3porting.com
http://python3porting.com
https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/howto/pyporting.html
https://docs.python.org/3/howto/pyporting.html

Learn to love six

● Compatibility library to smooth out edges
● Supports Python 2.5 - Python 3
● Single module for easy vendoring
● https://pypi.python.org/pypi/six

https://pypi.python.org/pypi/six
https://pypi.python.org/pypi/six

Only support
Python 2.7

RHEL users can get Python 2.7
through Red Hat Collections

Good test coverage is critical

● So you don't accidentally break anything
when porting

● coverage.py is handy
○ https://pypi.python.org/pypi/coverage

https://pypi.python.org/pypi/coverage
https://pypi.python.org/pypi/coverage

(Basic) new file template

coding: utf-8

from __future__ import (absolute_import,

 division, print_function, unicode_literals)

Transpilers do all the
easy stuff

Other tools help you to not undo your hard work

Modernize

● Harnesses 2to3 to update Python 2 code to
work with Python 2.6 - 3 as much as possible

● https://pypi.python.org/pypi/modernize

https://pypi.python.org/pypi/modernize
https://pypi.python.org/pypi/modernize

Futurize

● Think Modernize but with more of a Python
3 feel

● Provides backports of things from Python 3
such as the bytes type

● Part of future project: https://pypi.python.
org/pypi/future

https://pypi.python.org/pypi/future
https://pypi.python.org/pypi/future
https://pypi.python.org/pypi/future

Some fixes
require thinking

Sorry.

Need to care about
text vs. binary data

Can't conflate the two anymore

Need to make API decisions
about text vs. binary data

unicode/str in Python 2, str/bytes in Python 3

Mark all your string literals

● I recommend b prefix +
unicode_literals future statement when
possible

● u and b prefixes also work
● In the end you should know exactly what

type of data a string literal represents
○ Tooling will help enforce this

Updating your APIs

● If it's to work with text …
○ Make it work with Unicode

● If it's to work with binary data …
○ Watch out for indexing on bytes

● Be strict with whether you pass in text or
binary data, not just str in Python 2

● Let six help you

Text/bytes method uniqueness

str

● __mod__
● encode
● format
● isdecimal
● isnumeric

bytes

● decode

Python 3.5 improvements

● Bytes interpolation
○ b'I %s bytes' % (b'love',)

● -b will warn when comparing bytes to int
○ Helps with the bytes-indexing issue

Division
This shouldn't be a surprise;

been coming since Python 2.2

What to watch out for
● 5 / 2

○ 2 in Python 2
○ 2.5 in Python 3

● Python 3 semantics in Python 2
○ from __future__ import division
○ -Q flag to interpreter

● Not automatic in case you're using
something other than built-in types

Pylint

● Can warn against some things not allowed or
changed in Python 3

● use the --py3k flag to run only checks
related to Python 3 compatibility

Python flags

● -3
○ Triggers various warnings for things not available in

Python 3
○ Can use -W to control how severe to make the

warnings
● -b

○ To help with common bytes-related issues
○ Is a no-op in Python 2, so can blindly use

Your code now works in
Python 3!

Don't forget python2 -3, python3 -b,
and Pylint in your testing/CI

Dealing with those
pesky dependencies

Relying on others can be so trying sometimes

caniusepython3

● Checks your (in)direct dependencies to see
who is blocking your move to Python 3

● API for test integration
● Has extra checkers to work with Pylint
● https://caniusepython3.com/
● https://pypi.python.org/pypi/caniusepython3

https://caniusepython3.com/
https://caniusepython3.com/
https://pypi.python.org/pypi/caniusepython3
https://pypi.python.org/pypi/caniusepython3

Getting dependencies ported

● Ask
● Do it yourself
● Hire someone to do it for you

Use cffi, Cython, or ctypes
for extensions

There is also an official HOWTO on
porting hand-written extension code

Now you can use Python 3!
Welcome to the latest version of Python

python3 -bb
 Warns about common mistakes from mixing

 str and bytes

Continuous integration

● Use pylint --py3k to prevent regressions
● Use Tox to run tests under various Python

versions
○ https://pypi.python.org/pypi/tox

https://pypi.python.org/pypi/tox
https://pypi.python.org/pypi/tox

Q&A

Bonus slides
from my Thumbtack talk;

search for [thumbtack brett cannon] for YouTube video

Change is good for you!
Stuff in Python 2.7 that's different in Python 3.4

Fewer built-ins
● apply()
● buffer()*
● coerce()
● cmp()
● execfile()
● file()
● raw_input()*
● xrange()*
● StandardError

More iterators

● filter()
● map()
● zip()
● dict.items() et. al.

Advancing iterators

it.next()
next(it)

Less syntax, more functions

exec 'print `"Hello!"`'
exec('print(repr("Hello!"))')

New-style classes everywhere

class Foo(object): pass
class Foo(): pass
class Foo: pass

Declaring metaclasses

class Foo(object):
 __metaclass__ = type

class Foo(object, metaclass=type):
 pass

Parameter unpacking is gone

def func(a, (b, c), d): pass

Catching exceptions

except Exception, exc: ...
except Exception as exc: ...

Raising exceptions

raise Exception, 'uh-oh'
raise Exception('uh-oh')

Imports

from __future__ import absolute_import

from ..spam import eggs

Octal and binary literals

0720
0o720
0b10101

Integer unification

● int went away
● long became int
● L suffix is no more

Standard library renamings

● Fixed some bad names
○ ConfigParser -> configparser

● Turned some things into packages
○ httplib -> http.client
○ BaseHTTPServer et. al. -> http.server

All of that works in
Python 2.6!

And you can have it in an automated fashion!

Decorate/sort/undecorate

sorted(x, cmp=...)
sorted(x, key=...)

Integer division

● int / int returns a float
● int // int does what Python 2 does
● Get the semantics in Python 2

○ from __future__ import division
○ -Q new
○ Been around since Python 2.2

Text and binary data
● Python 2

○ Text is basestring: (str, unicode), essentially
○ Binary data is str (bytes is an alias in Python 2.6)

● Python 3
○ Text is str (similar to unicode in Python 2)
○ Binary data is bytes (sort of similar to str in

Python 2)
○ To see differences, try set(dir(str)).

difference(dir(bytes))

All of that is still available
in Python 2.6!

It just takes some effort to have

New features!
In Python 3.4 that you can't have in Python 2.6

Set literals

x = {1, 2, 3, 4}

Set & dict comprehensions

{x**x for x in range(10)}
{x: x**x for x in range(10)}

All of that is in Python 2.7!
Everything from now on is exclusive to Python 3,

I promise

Unicode everywhere

● Source code is UTF-8 encoded by default
● Based on the Unicode standard annex UAX-

31 with some tweaks

__pycache__

● All .pyc and .pyo files are put in a
__pycache__ subdirectory

● All bytecode files are tagged per interpreter
to prevent overwriting when using a different
Python version

Extended iterable unpacking

a, *b, c = range(10)
a == 0
b == list(range(1, 9))
c == 9

Enhanced exceptions

● Chaining connects causal chain of exceptions
○ Implicit from simply raising another exception while

another is active
○ Explicit with raise exc2 from exc1

● Traceback now embedded in exception

Keyword-only arguments

def func(a,*, are_you_sure):
 pass

Function annotations

def func(a:int) -> float:
 pass

nonlocal

def outer():
 x = 0
 def inner():
 nonlocal x
 x += 1
 return x, inner

super()

class Foo(bar):
 def __init__(self):
 super().__init__()

Stable ABI

● Hides interpreter details
● Guaranteed not to change
● Define Py_LIMITED_API and your

extension module won't require
recompilation per Python version

yield from

for x in range(10): yield x
yield from range(10)

Significant stdlib additions

● ssl.SSLContext
● asyncio
● tracemalloc

pip & venv

● pip is now installed by default
● Virtual environments created by venv install

pip by default
● Plans to have platform installers install pip

in a future Python 2.7 release

Performance

● decimal implemented in C
● Integer math faster
● More efficient string memory use
● Key-sharing dictionaries
● Custom memory allocators
● Interchangeable hash algorithm

Looking to the future
Preview of Python 3.5

Matrix multiplication

x @ y
x @= y

% formatting for bytes

● Supported subset of what % does for strings
● Makes constructing ASCII-based binary data

easier
● Will help binary-manipulating Python 2 code

also work in Python 3

